AD-769 822 AN APPROXIMATION FOR THE DISTRIBUTION OF THE WILCOXON ONE-SAMPLE STATISTIC Winston K. Chow, et al California University Prepared for: Office of Naval Research 1969 **DISTRIBUTED BY:** National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 # AN APPROXIMATION FOR THE DISTRIBUTION OF THE WILCOMON ONE-SAMPLE STATISTIC By Winston K. Chow and J. L. Hodges, Jr. No. University of California, Berkeley ## 1. Introduction In 1945 Frank Wilcoxon suggested a statistic that may be used to test the location of a continuous symmetric population. Without loss of generality, we suppose that the null hypothesis puts the center of symmetry at zero, and that X_1, X_2, \cdots, X_n are observations drawn from the population. Rank these observations in order of increasing absolute value, and attach to each rank the sign of the corresponding X_1 . There are 2^n possible patterns of signs, and under the null hypothesis each pattern has the same probability $\frac{1}{2^n}$. Let W denote the sum of the ranks with negative sign. A small value of W constitutes evidence that the population center lies to the right of zero. The Wilcoxon test, based on W, is attractive in several ways. The statistic itself is easy to compute. Its null distribution, which requires only the counting of the number, say #(w), of sign patterns giving W = w, provides exact significance probabilities without requiring any assumption of a parametric Approved for public returned Springfield VA 2 40 This research was supported by the Office of Naval Research, Contract NONR-NO0014-69A-0200-1038. form for the population (see Section 2). In normal samples, the Wilcoxon test has the high efficiency $3/\pi = .955$ in the limit as $n\to\infty$, relative to the t-test, and Klotz found in 1963 [5] that the efficiency is also high for normal samples of sizes $5 \le n \le 10$ provided α is not too small. For populations similar to the normal but with heavier tails, which is perhaps a typical situation in practical work, the large-sample efficiency of Wilcoxon relative to to can be arbitrarily greater than one. Because of the importance of the Wilcoxon test, it is desirable to be able to find out something about the distribution of W in various circumstances. For example: Does the high efficiency in the normal case hold not only for $n \le 10$ and $n \to \infty$, but also for moderate intermediate values? Does the asymptotic insensitivity of W to heavy tails hold also when n is small? How robust is the significance probability against moderate departures from symmetry? For each of these and many similar questions, we need to find the distribution of W under the assumption that X_1, X_2, \cdots, X_n are drawn from a population with distribution G which is not symmetric about zero. As reviewed below, this distributional question has not proved easy. We offer here a method of approximation which seems to be useful, at least in some cases, and then use it to throw some light on the specific questions asked above. It is easy to see that what is said also applies, with appropriate modifications, to another important use for the Wilcoxon test-statistic--to test the absence of treatment effect in a matched-pairs design. In that case, X₁ represents the observed difference in response between treated and control subject in the ith pair. The random assignment of treatments gives W its null distribution. If we imagine a population of pairs in which X has the distribution G, the questions of power and robuscness may also be asked in this case. We shall however for simplicity couch our work in terms of the one-sample problem. #### 2. The null distribution Under the null hypothesis, $P(W = w) = \#(w)/2^n$. The range of W is from 0 to $w_N = \frac{1}{2}n(n+1)$, and the distribution is symmetric about $\frac{1}{4}n(n+1)$. The function #, which is needed in our approximation, may be computed by means of recursion on n. Tables J and K of [2], provide all values of #(w) for $n \le 12$; and for $w \le n + 30$ where n ranges between 13 and 20, inclusive. For future reference, we show the values of # for n = 10 in Table 1. For $w \le n$, values of # can also be read from the partition function q given in Table 24.5 of [7]. In case of large n, and w > n, the Edgeworth approximation leads to the approximation (2.1) #(w) = $$2^{n} \cdot P(W = w)$$ = $2^{n} \cdot \varphi(z) \cdot (1 - 3(u^{2} - 6u + 3)/10 \cdot (2n+1)$ + $3(u^{3} - 15u^{2} + 45u - 15)/35n^{2}$ + $9(u^{4} - 28u^{3} + 210u^{2} - 420u + 105)/800 n^{2}/\sigma$ where $\sigma^2 = n(n+1)(2n+1)/4$, $z = [w - \frac{1}{4} n(n+1)]/\sigma$ and $u = z^2$. Formula (2.1) has relative error of order $1/n^3$, and Table 2 shows that it gives excellent results at the limits of the exact tables described above. ## 3. Distribution of W by numerical integration Numerical integration gives a straightforward method of finding the distribution of W for a given G. Suppose the continuous G has a density g, which would be so in nearly all cases of interest. By independence, the joint density of the sample is $g(x_1)g(x_2)\cdots g(x_n)$. The n-dimensional space may be divided into 2^n regions corresponding to the 2^n patterns of signs for the absolute values. Evaluation of the integrals of this joint density over these 2^n regions will give probabilities, appropriate sums of which will give the distribution P(W = w). An effective iterative scheme for evaluating these integrals was devised by Klouz [7], who in 1963 published results for normal samples with $5 \le n \le 10$. We are grateful to Professor Klotz for supplying us with his original results, only part of which have heen published. His values for n = 10 and N(1,1) are shown in the third column of Table 4. Professor Klotz points out that the sum of his 1024 integrals is 1.0003, indicating that the fourth decimal place is not quite reliable. The Klotz iterative formulas were used by Arnold [1] in 1965 to obtain results for t-distributions with the same sample sizes. While the integration approach is straightforward, it rapidly becomes very expensive as n increases. Not only does the number of regions increase exponentially with n, but even worse is the increase in dimensionality. (The difficulty of accurate integration in higher-dimensional space is discussed in detail by Milton [6] for the related two-sample problem.) If one wishes to survey a wide range of sample sizes and distributional shapes, integration does not appear to be a practical approach. Experience with other tests suggests that some sort of approximation is likely to be helpful as a supplement to the small-sample calculation. Fortunately, it is not difficult to find moments of W for use with approximations to its distribution. ## 4. Low-order moments of W It is well known that W can be expressed as a sum of indicators, which leads to expressions for its moments in terms of certain probabilities. We will now record convenient formulas for the first three moments: (4.1) $$E(W) = [\frac{1}{2} q_1 \cdot (n-1) + p] \cdot n,$$ (4.2) $$Var(W) = [[m_{23} \cdot (n-2) + m_{22}](n-1) + m_{21}]n$$, (4.3) $$\mu_3(W) = \langle ([m_{34} (n-3) + m_{33}](n-2) + m_{32}](n-1) + m_{31} \rangle \cdot n$$, where $$(4.4)$$ $m_{21} = p(1-p)$, (4.5) $$m_{22} = (p-q_1)^2 + 3q_1(1-q_1)/2$$, $$(1,6)$$ $m_{23} = q_2 - q_1^2$ (4.7) $$m_{31} = p(1-p) \cdot (1-2p)$$, (4.8) $$m_{32} = 6q_1^- (1-2p-q_1) - 6pq_1(1-q_1) + 3p^{2}(1+3q_1) + \frac{1}{2}q_1 \cdot (1-q_1) \cdot (1-2q_1)$$, (4.9) $$m_{33} = 6q_2^+ + 3q_2 (2-3p-3q_1) + 6q_1^- (p-2q_1) + q_1^2 (12p + 8q_1 - 3) + p^3,$$ (4.10) $$m_{34} = q_3 + 3r - 9q_1q_2 + 5q_1^3$$, and (4.11) $$p = P(X_1 < 0) = G(0)$$ (4.12) $$q_k = \int_{-\infty}^{\infty} g(x) G^k(-x) dx$$ (4.13) $$q_k^- = P(X_2, X_3, \dots, X_{k+1} < -X_1, X_1 < 0)$$ = $\int_{-\infty}^{0} G^k(-x) g(x) dx$ and (4.14) $$q_k^+ = P(x_2, x_3, \dots, x_{k+1} < -x_1, x_1 > 0)$$ = $\int_0^\infty G^k(-x)g(x)dx$, $$(4.15)$$ h(x) = g(x)G(-x), (4.16) $$H(x) = \int_{-\infty}^{x} h(u) du$$, (4.17) $$r = \int_{-\infty}^{\infty} h(x)H(-x) dx$$. Notice that only univariate numerical integration is required by any of these formulas, and that all values of n are dealt with simultaneously. We give as Table 3 the values of the coefficients for the first three moments for the normal distribution $\mathcal{N}(\mu,1)$ with unit variance and expectation μ , for some of the values of μ considered by Klotz. ### 5. The normal approximation It follows from the work of Hoeffding [4] that, as $n \to \infty$, $\frac{W - E(W)}{S.D. (W)}$ will tend to the standard normal distribution. At first glance, one might hope that this fact, combining with small-sample integrations by the method of Klotz, would solve the problem. Unfortunately, it appears that the normal approximation is still very bad at the practicable limits of the integration approach. This is illustrated in the fourth column of Table 4, for a sample of n = 10 drawn from $\mathcal{N}(1,1)$. The results of Klotz's integrations are compared with this normal approximation (with continuity correction) for $E(W) = 5.125 \ 785$ and $Var(W) = 23.847 \ 590$, which are the moments found by using Table 3 and formulas (4.1) and (4.2). The maximum error of the cumulative form of the normal approximation is -0.1004. The reason for the poor results is apparent if one glances at Figure 1, which shows the distribution of W as a histogram. The shape is quite unlike that of a normal curve, and indeed, without Klotz's work, the mere values of E(W) and S.D.(W) could have told us that this must be so. Since W is nonnegative, it cannot be nearly normal unless E(W) is (say) at least 2.5 times as large as S.D.(W). From (4.1) and (4.2), it can be shown that this will not occur until n reaches 67. The same general result is found for other population shapes than the normal. Therefore, this reveals that the normal tendency of W does not take effect until n is much larger than can practically be dealt with by integration. It is of course possible that some other "smooth" approximation may be found to give much better results. However, inspection of Figure 1, and similar figures for other cases, does not encourage one to hope for good smallsample results with approximations based on Edgeworth expansions or on the Pearson family of curves. We somehow need a method of approximation that deals with the irregularities of the null distribution of W. ## 6. The average probability method Figure 1 shows that, for the case of a sample of 10 from $\mathcal{N}(1,1)$, P(W=w) tends to decrease as w increases, but in a rather irregular way. This irregularity can be explained by the irregularity of #(w) (Table 1). Thus, for each of the values w=0, 1 and 2, there is only one sign pattern, and these Figure 1: Histogram of distribution of W from $\mathcal{N}(1,1)$, n = 10 Figure 2: Average probabilities of W from $\mathcal{N}(1,1)$, n = 10 Figure 3: \log_e (average probability) from $\mathcal{N}(1,1)$, n = 10 probabilities decrease smoothly. At w = 3, there are however two sign patterns, which "explains" why P(W = 3) exceeds P(W = 2), rather than continuing to decline. Let us consider P(W = w) / #(w), the average probability of the #(w) sign patterns corresponding to W = w. As Figure 2 shows, these average probabilities do decrease in a rather smooth way, at something like an exponential rate. This suggests that we write (6.1) $$L(w) = \log_{e}[P(W = w) / \#(w)],$$ and Figure 3 confirms the very smooth behavior, at least in this example, of L as a function of w. We now have an idea for a method of approximation to the distribution of W. The values of L at the two extreme points are known: W = 0 if and only if all the n observations are positive, hence, we have $L(0) = n \log_e (1-p)$, since #(0) = 1 and the probability of a positive observation is 1 - p by (4.11); similarly, $L(w_M) = n \log_e p$. By assuming that L(w) behaves smoothly between these terminal values, we can interpolate some appropriate smooth function, say L^1 . If L^1 is close to L, then $P_1^1(w) = \#(w) \cdot e^{L_1^1(w)}$ will be close to P(w). Various methods of fitting L^1 to L are possible. We have investigated the use of the known moments of W discussed in Section 4. The simplest functions with the required values at w = 0 and w_M are the polynomials. Of course, some other smooth functions might be more appropriate in some cases. We shall however couch our discussion in terms of polynomial approximations which give satisfactory results for all cases we are going to consider in the next few sections. We shall denote by L_k , the polynomial of degree k, fitted to L by the requirements (1) that $L_k(0) = L(0)$ and $L_k(w_M) = L(w_M)$, and (2) that the corresponding probabilities $P_k(w) = \frac{L_k(w)}{k}$ have the same moments as W of orders $0,1,\cdots,k-2$. We thus impose k+1 conditions, corresponding to the k+1 coefficients of a polynomial of degree k. First, let us consider the linear interpoland, $L_1(w) = L(0) + a_1w$, where (6.2) $$a_1 = [L(w_{hi}) - L(0)]/w_{M} = \frac{n}{w_{M}} \log \frac{p}{1-p}$$. However, this interpoland will give probabilities $P_1(w)$ which in general do not add up to 1. A proper distribution requires use of the quadratic interpoland, which we shall write as $$L_2(w) = L_1(w) + a_2 \cdot w \cdot (w_M - w)$$. Clearly, $P_2(w)$ is monotonely increasing in a_2 , so there exists a unique value of a_2 for which $\Sigma P_2(w) = 1$. Since the value of p determines L_1 , which in turn determines a_2 and hence L_2 . For any given n, P_2 is a one-parameter family of distributions, governed only by the parameter p, regardless of what the particular underlying distribution G is. Table 5 shows, for n=10 and for several values of p, the coefficients of L_2 , and the expectation $\Sigma w P_2(w)$ of the resulting distribution P_2 . In any given case, one may compare this expectation of the approximating P_2 with the true expectation E(W), as given by (4.1), in order to help in judging the adequacy of the approximation P_2 . As an illustration, let us consider a sample of 10 from $\mathcal{N}(1,1)$. From a normal table one reads that p=.1587. Hence, from (6.2), $a_1=-.303321$, also a_2 is uniquely determined, giving $a_2=.001938$. The resulting probabilities P_2 have errors as shown in column 5 of Table 4. P_2 is substantially better than the normal approximation, having a maximum error only 12 percent as large. Of course, we know the error of P_2 only because the Klotz computations are available. However, even without those we could have considerable confidence in P_2 because of the readily available moment check. Interpolating the fifth column of Table 4 shows that the expectation of P_2 is 5.04, which is fairly close to the correct value E(W) = 5.13 obtained from (4.1). In seeking a still better approximation, it is natural next to modify L_2 by adding a cubic term, to obtain an approximation with the correct expected value, say $$L_3(w) = L_2(w) + a_3 \cdot w \cdot (w_M - w) \cdot (w - b_3)$$. The proper values of a_3 and b_3 are determined by the requirements that $\Sigma P_3(w) = 1$ and $\Sigma w P_3(w) = E(W)$, which may be found numerically by inspection. (We have not proved the existence and uniqueness of a_3 and b_3 , but conjecture these properties will hold in all reasonable cases. At least in all of our trials the convergence to the fitted values proceeded smoothly and without difficulties.) The search for a_3 and b_3 is aided by knowing where to start. Let us suppose that the P_2 approximation is a good one, so that only a small cubic correction is needed, and accordingly a_3 is small. Then, to a first approximation, $$P_3(w) = P_2(w) + a_3 P_2(w) \cdot w(w_M - w) \cdot (w - b_3)$$, and this approximation, for each W=w, has error due to replacing $e^{\Delta(w)}$ by $1+\Delta(w)$ for small $\Delta(w)$, where $\Delta(w)=a_3\cdot w\cdot (w_M-w)\cdot (w-b_3)$. If we now impose the requirements that $\Sigma P_2(w)=\Sigma P_3(w)=1$ and $\Sigma w P_3(w)=E(W)$, we find these approximation values for a_3 and b_3 : $$b_3^* = S_1/S_0$$, $a_3^* = [E(W) - \Sigma WP_2]/(S_2 - b_3^*S_1)$ where $S_k = \sum_{i=1}^k P_2(w) \cdot w \cdot (w_M - w)$. Table 5 gives the values of b_3^* and $S_2 - b_3^* S_1$, which will indicate in any given case a good point for starting the search for a_3 and b_3 . We have written a program for the automatic conduct of the search. Once a_3 and b_3 are found, it is easy to compute L_3 and hence P_3 . Here, $a_3^* = 0.000 013 3185$, $b_3^* = 9.0378$, and the searched $a_3 = 0.000 012 9195$, $b_3 = 9.1249$, and the agreement between P_3 and the Klotz values is better than that of P_2 . The distribution P_3 will by definition have the correct values at w = 0 and at $w = w_M$, and the correct expectation. The quality of such an approximation may be judged by comparing EW^2 with $\Sigma w^2 P_3(w)$ or the corresponding variances. In this case, the variance of P_3 is 24.75, where the correct variance of W is 23.85. If the agreement is not as good as desired, one may add a quartic term to L_3 , getting $$L_{\mu}(w) = L_{3}(w) + a_{\mu} \cdot w \cdot (w_{M} - w) \cdot (w - b_{\mu}) \cdot (w - c_{\mu}),$$ where a_{ij} , b_{ij} , c_{ij} are determined by the requirements that P_{ij} have the correct moments of orders 0, 1, 2. In the cases we have examined, the quartic correction tends to be small, and to a good approximation with error discussed above, we obtain the trial coefficients given by: $$b_{4}^{*} = \frac{1}{2s_{1}^{'2} - 2s_{2}^{'}s_{0}^{'}} (s_{2}^{'} \cdot s_{1}^{'} - s_{0}^{'} \cdot s_{3}^{'} + [4s_{2}^{'3} \cdot s_{0}^{'} \cdot 4s_{3}^{'} \cdot s_{1}^{'3}]$$ $$+ (s_{0}^{'} \cdot s_{3}^{'})^{3} - 3(s_{2}^{'} \cdot s_{1}^{'})^{2} - 6s_{0}^{'} s_{1}^{'} s_{2}^{'} s_{3}^{'}]^{\frac{1}{2}})$$ $$c_{4}^{*} = (s_{2}^{'} - b_{4}^{*} \cdot s_{1}^{'})/(s_{1}^{'} - b_{4}^{*} \cdot s_{0}^{'})$$ $$a_{4}^{*} = (EW^{2} - \Sigma w^{2}P_{3}(w))/(s_{2}^{'} - (b_{4}^{*} + c_{4}^{*})s_{1}^{'} + b_{4}^{*} c_{4}^{*} s_{0}^{'})$$ where $S_k^1 = \Sigma w^k P_3(w) \cdot w \cdot (w_M - w)$. Unless one is lucky, the required moments corresponding to this set of trial coefficients need to be adjusted. One may make slight adjustments if these values do not give P_{ij} with moments sufficiently close to the true values as found by the formulas of Section 4. The approximations P_2 , P_3 , P_4 are successively more accurate, as one might hope. The maximum absolute errors are 0.0120, 0.0083, and 0.0047 respectively. The root mean square errors for $1 \le w \le 20$ decrease also, being .0057, .0041, .0027. In principle, one might now use $E(W^3)$ to add a quintic term, but if the method is working well for the case at hard, the agreement between P_3 and P_4 , and between EW^3 and $EW^3P_4(w)$, should indicate that the P_4 approximation will serve. There is an intuitive reason for thinking that P_4 is a natural stopping point. Since both $\log P(w)$ and $\log \#(w)$ are nearly quadratic in w for large n, it follows from (6.1) that L(w) will also be nearly quadratic in the interval near E(W) containing most of the probabilities. For a polynomial to accord with this shape, and also have specified values at the "distant" points, w = 0 and w_M , it requires five degrees of freedom of a quartic. Thus, one may expect the approximation P_4 to agree with the asymptotic normal approximation in large sample 3, whereas P_3 could not be in general expected to do this. Table 4 shows, for our normal example, the excellent spream to of P_{ij} with the results of the Klotz computations, with the maximum error of P_{ij} -cumulative is 0.0047. In addition, $\Sigma w^3 P_{ij}(w) = 642.4183$, so that P_{ij} has standardized third moment 1.211, compared with the value 1.268 for W. This shows that the skewness of this approximating P_{ij} seems to be about right. While computations like those of Klotz will seldom be available for a check, this third-moment check can be made in general, as can the reassurance of finding P_{ij} close to P_{ij} . We have also tried out the average-probability method on the computations of Arnold, for a sample of size n=10 from a re-scaled t-distribution with four degrees of freedom, and for shift $\mu=1.0$. By examining the probabilities published by Arnold, we concluded that for $w \ge 3$, they appear to have a smooth behavior. Hence, we applied our method to approximate distribution of W for $3 \le w \le 55$. For w < 3, one can always use the formulas stated in Section 7. The results are again good for P_4 , although not as good as in the normal example. The reason appears to be the exceptionally heavy tail of t_4 . The maximum difference between P_3 and P_4 is 0.0017, where the maximum error of the P_4 -cumulative is 0.008 from Arnold's results. It is also necessary to point out situations when our approximation does not seem to wor' too well. One intuitive case we have at hand is $t_{\frac{1}{3}}$ with sample size n=10 and shift $\mu=1.0$. #### 7. An additional check While computations by numerical integration of the entire distribution of W is seldom available and not easily done, it is not too difficult to get correct probabilities for small values of W. One can easily express these probabilities as univariate integrals: (7.1) $$P(W = 1) = n \int_{-\infty}^{0} g(x) \cdot [1 - G(-x)]^{n-1} dx$$ (7.2) $$P(W = 2) = n(n-1) \int_{-\infty}^{0} g(x) \cdot [G(-x) - G(0)] \cdot [1 - G(-x)]^{n-2} dx$$ (7.3) $$P(W=3) = \frac{n(n-1)(n-2)}{2} \int_{-\infty}^{0} g(x) \cdot [G(-x) - G(0)]^{2} \cdot [(1-G(-x)]^{n-3} dx + n(n-1) \int_{-\infty}^{0} g(x) [G(0) - G(x)] \cdot [1 - G(-x)]^{n-2} dx.$$ We have found by numerical integration for the case of Table 4 that $$P(W = 1) = .11365$$ $$P(W = 2) = .07501$$ $$P(W = 3) = .10360$$ which verify the results obtained by Klotz. The probabilities for small w can be used to check on the adequacy of the L-approximations. Alternatively, they can be used to permit L to be interpolated between w=3 and w_M rather than w=0 and w_M . As in the t_4 -case of the preceding section, this is likely to be useful in irregular situations. In a similar way, P(W = w) for $4 \le w \le 8$ can be computed by bivariate integrals, and then L could be interpolated between w = 8 and $w = w_M$. ## 8. Normal samples of moderate size The Pitman analysis—shows that, with very large normal samples, the relative efficiency of the Wilcoxon test to the t-test is $3/\pi = 0.955$. Based on his computations for $5 \le n \le 10$, Klotz found that efficiencies lie in the range of (.955, .986) for $.01 \le \alpha \le .10$. (The efficiencies were lower for very small α .) Those facts have led to a widespread belief that the efficiency of the Wilcoxon test is high in all normal cases when the value of α is not too small. There has of course remained the possibility that the efficiency was less good for moderate values of n than for values at either extreme. To throw some light on this question, we have applied the average-probability method to a sample of n=20 from (.75, 1). This computation requires #(w) for n=20 recorded in Table 2. We found that L(0)=-5.139 885, L(210)=-29.688 965, $a_1=-0.116$ 900 38, $a_2=-.000$ 135 9136, $a_3=-.000$ 000 2592, $b_3=40.0236$, $a_4=-.000$ 000 003 484, $b_4=26.6508$, $c_4=62.8990$. Table 6 shows excerpts from the cumulative forms of the distribution P_3 and P_4 . The good agreement of these approximations, together with the satisfactory agreement of the standardized third moment for P_4 (0.644) and W(0.664) lends confidence to the results. As an additional check, we have evaluated (7.1), (7.2) and (7.3), with these results: | | P(W = w) | | | | | |---|----------------|------------------------|--|--|--| | W | by integration | approx. P ₄ | | | | | 1 | 0.0050 | .0051 | | | | | 2 | 0.0043 | .0044 | | | | | 3 | 0.0074 | .0076 | | | | From this P_{ij} -approximation, we find the following efficiencies for n = 20: | | a = | β = | β for | t-test | Relative eff. | |----|------------------------|-----------|---------|---------|---------------| | w | P _H [N = w] | PA[W > w] | n = 19 | n = 20 | of W to t | | 45 | 0.01198 | 0.20994 | 0.21888 | 0.19289 | 0.9672 | | 52 | 0.02422 | 0.12760 | 0.13251 | 0.11415 | 0.9634 | | 61 | 0.05270 | 0.06153 | 0.06335 | 0.05310 | 0.9588 | | 66 | 0.07682 | 0.03938 | 0.04032 | 0.03328 | 0.9567 | | 69 | 0.09467 | 0.02972 | 0.03049 | 0.02482 | 0.9568 | ### 9. The Wilcoxon distribution in a heavy-tailed case Many statisticians consider that actual distributions found in practical work tend to resemble a normal, except that in some cases their tails are heavier than the very exiguous normal tails, corresponding perhaps to an occasional gross error. Such a departure from the normal shape can increase the population variance substantially, to the severe detriment of the large-sample performance of the t-test. On the other hand, this sort of departure from normality will have very little effect on the integral of the square of the population density, which governs the large-sample performance of the Wilcoxon test. Accordingly, the Pitman analysis shows that Wilcoxon can be substantially superior to t in such cases. This is of course pertinent only when the sample is sufficiently large. If the sample is small, it would seem quite likely that none of the sample values will come from the tails, so that in effect one is sampling from the "normal" part of the population. In that case the t-test should be superior. It is natural to pose a question: how large must the sample be before the heavy tails can exert their baleful effect on t relative to W? An investigation of this important question has been hindered by the fact that it is difficult to calculate the power of either test. The average-probability method permits one to obtain a reasonably good approximation for the power of W. We present some results, partly in the hope that they may stimulate someone to think of a good way to do the same for the t-test, so that the comparison may be completed. Let us take as our heavy-tailed distribution a Tukey model consisting of a blend of 97% from $\mathcal{N}(1,1)$ and 3% from a normal with the same expected value 1, but with standard deviation 4. For a sample of n=10 from this distribution, we find that L(0)=-1.814 432, L(55)=-17.961 627, $a_1=-0.293$ 585 36, $a_2=-.001$ 785 78, $a_3=0.000$ 049 611 2, $b_3=9.8276$ $a_4=-.000$ 003 6214, $b_4=6.2444$ and $c_4=18.6004$. Table 7 shows the cumulative forms of the distributions of P_3 and P_4 . Agreement is again good, also for the standardized third-moment check, with 1.122 for P_4 and 1.156 for W. As an additional check, we used the integrals of Section 7: | | P(W ∞ w) | | | | | |---|----------------|-------------------|--|--|--| | w | by integration | by P ₄ | | | | | 1 | .1043 | .1058 | | | | | 2 | .0690 | .0700 | | | | | 3 | .0954 | •0942 | | | | All checks indicate that our P_{μ} -approximation is performing well in this heavy-tailed case. With this blending of a Tukey model, the number of gross errors, G, is binomial (n = 10, p = 0.03) where P(G = 0) = 0.737 424. In other words, it may be quite likely, with probability 0.737 424, that all the 10 sample values will be from pure $\mathcal{N}(1,1)$, for which case we have discussed in Section 6. One interesting point here is that, by subtracting this out, we are able to get the conditional distribution of W given G > 0. That is, knowing that some gross error occurred in this sample of 10, $$P(W = w|G > 0) = \frac{1}{.262576}[P_{pure \mathcal{N}(1,1)}(W = w) - .737424 \cdot P_{\mu}(W = w)].$$ ## 10. Robustness of the Wilcoxon test against asymmetry The Wilcoxon one-sample test is intended to test the location of the center of symmetry of a symmetric population. Any actual population will be asymmetric, at least to some extent. It is accordingly important to know how robust the test is against asymmetry. That is, we need to find out how the actual significance probability compares with the nominal value given by the null distribution, in case the population is centered at zero but is moderately asymmetric. The average-probability method can throw some light on this important question. Before this problem can be tackled, it is necessary to decide what is meant by the "center" of an asymmetric population. The concept of center is naturally related to the statistical tool being used. If one works with the sample mean, then the population mean is the natural center, at least with large samples; similarly, the sample median calls for the population median; and so forth. What is the "Wilcoxon center" of a population? Let us seek to define center in such a way as to promote the robustness of the significance probability. That is, we want the distribution of W, when the population is "centered" at 0, to resemble the null distribution in Section 2. This distribution is (except for very small n) nearly normal, so presumably W will continue to be something like normally distributed for mildly asymmetric populations. To keep the distribution of W nearly the same, we try to keep its location and scaling nearly the same. In the symmetric case, if the null hypothesis is true, then $q_1 = \frac{1}{2}$ and $p = \frac{1}{2}$, so that $$E(W) = [\frac{1}{2} q_1(n-1) + p] \cdot n = \frac{1}{4} n(n+1)$$. One may seek to define center in general so that, under the null hypothesis, one will continue to have $q_1 = \frac{1}{2}$ and $p = \frac{1}{2}$, and thus W will continue to be centered at $\frac{1}{4}$ n(n+1), as in the symmetric case. Unfortunately, it turns out that this is in general impossible: if we locate the population so that $q_1 = \frac{1}{2}$, then p will differ at least slightly from $\frac{1}{2}$, and vice versa. At least when n is large, the dominant term of E(W) is the one involving q_1 . We are led to the idea of defining center so that, when the population is centered at 0, $q_1 = \frac{1}{2}$. Recalling that q_1 is the probability that $X_1 + X_2 < 0$ or equivalently that $\frac{1}{2}(X_1 + X_2) < 0$, we see that this event will have probability if the median of the distribution of $\frac{1}{2}(X_1 + X_2)$ is located at 0. We are led to define: The Wilcoxon center of a population is the median of the mean of two observations therefrom. We note that in the symmetric case, this definition yields the conventional center of symmetry. In general, with this definition, p will differ slightly from $\frac{1}{2}$ for moderately asymmetric populations, and hence E(W) will not quite coincide with $\frac{1}{4}$ n(n+1), though it will be so very near if n is large. However, the only way to force $E(W) = \frac{1}{4}$ n(n+1) would be to have the definition of the center of the population depend on the size of the sample, and that would be peculiar. Let us illustrate these ideas. Consider the chi-square distribution with 10 degrees of freedom, depicted in Figure 4. This population has the sort of moderate skewness, with standardized third moment of 0.894~427, that might be encountered in practice in cases when the population was thought to be symmetric. If X_1 and X_2 are observations, independently, therefrom, then $X_1 + X_2$ has the chi-square distribution with 20 degrees of freedom whose median is 19.337. Thus, the median of the distribution of $\frac{1}{2}(X_1 + X_2)$ is 9.6685, that is, $P(\frac{1}{2}(X_1 + X_2) < 9.6685) = \frac{1}{2}$, and the Wilcoxon center of χ^2_{10} is at 9.6685. For comparison, the median is 9.6685, the mode is 8.00, and the expectation is 10.0, as illustrated in Figure 4. If we translate the population to bring the Wilcoxon center to 0, then $p = P(X_1 - 9.6685 < 0) = 0.53$. Accordingly, under the null hypothesis that the Wilcoxon center is at 0, $$E(W) = \frac{1}{4}(n-1) \cdot n + 0.53 \quad n = \frac{1}{4} \cdot n(n+1) \left\{1 + \frac{4 \cdot (0.03)}{n+1}\right\}$$ at n = 10, we get E(W) = 27.8 instead of the desired 27.5. Since S.D.(W) is approximately 9.8526, the discrepancy of 0.3 in the expected value of W is not especially important, and it would be even less so as n is increased above 10. The magnitude of the departure of p from \(\frac{1}{2} \) in typical cases can be assessed by examining the Edgeworth expansion: $$\begin{aligned} \mathbf{p} &= \mathbf{P}[\mathbf{X}_1 < \text{med } (\frac{1}{2} (\mathbf{X}_1 + \mathbf{X}_2))] = \mathbf{F}_{\mathbf{Z}}(z) \\ &= \Phi(z) - \eta_3 \varphi^{(2)}(z) + [\eta_4 \varphi^{(3)}(z) + \frac{1}{2} \eta_3^2 \varphi^{(5)}(z)] \\ &- [\eta_5 \varphi^{(4)}(z) + \eta_3 \cdot \eta_4 \varphi^{(6)}(z) + \frac{1}{6} \eta_3^3 \varphi^{(8)}(z)] + \cdots \end{aligned}$$ where $$z = \frac{\text{med.} - EX_1}{S.D.(X_1)}.$$ In order to determine how far out should one carry for this expansion, one needs to examine the value determined in each batch ([]), which contains terms of the same order of convergence. If the value of a certain batch is small compared to the sum of the previous terms, one need not go any further. To illustrate this point, let us work out, for example, χ_{10}^2 with n = 10: $$z = -0.074 126$$ where the sum of the first 4 terms sum up to 0.529 918. Adding in the next three terms will give p = 0.530 418. For our purpose, p = 0.53 will serve. Let us now return to the robustness question. Suppose we have been given a specific asymmetric distribution, and have translated it to bring the Wilcoxon center to 0. This will make $\mathbf{q}_1 = \frac{1}{2}$ and will yield a specific value of p. Accordingly, for a given sample size, E(W) is determined. We may therefore apply the average-probability method to yield an approximating distribution P_3 . Therefore, we have in P_3 a one-parameter family of distributions determined by the parameter p. By the formulas of Section 4, we can calculate Var(W) and $\mu_3(W)$. This permits the refinement of P_3 to P_4 , and a third-moment check on the adequacy of the P_4 approximation. We have corried out this process for the χ^2_{10} example, for n = 10: $$E(W) = (.249986 (n-1) + .529958) \cdot (n) = 27.8$$ $$Var(W) = [(.084377 (n-2) + .375899)(n-1) + .249103] \cdot n$$ $$= 97.0735$$ $$\mu_3(W) = ([(.009280 (n-3) + .037334)(n-2) - .000113] \cdot (n-1) - .014925) \cdot n$$ **-** 73.49325 with standardized third moment 0.076842. We also found by the average-probability method, $$L(0) = -7.550 226$$, $L(55) = -6.348 783$ $a_1 = 0.021 844 418$, $a_2 = -.000 007 4499$, $$a_3 = -.000 \cdot 037 \cdot 473 \cdot 2$$, $b_2 = 28.32399$ $a_{\mu} = .007 \ 000 \ 018 \ 749$, $b_{\mu} = 19.33199$, $c_{\mu} = 36.44021$. Table 8 shows excerpts of the P_{μ} -cumulative. At a first glance at some of the values shown, say, if you will reject if $W \le 9$, then the significance probability shown by this approximation is 2.557%, where the nominal value given by the null distribution is 3.223%. This does not sound too appealing. However, it is amazing how good the result will be, if one is doing a two-tailed test. For example, if one is willing to reject if $W \le 9$ or $W \ge 46$, the nominal value will give 6.446%, and the significance probability will add up to 6.60%. The reason that neither of the one-tailed test is too encouraging is due to the skewness based on this asymmetry distribution χ^2_{10} . But when one is doing a two-tailed test, the significance probabilities of both sides seem to balance out. Thus, one may conclude that the robustness property of Wilcoxon test against asymmetric distribution owns a much more sound evidence in the case of two-tailed test than either tail. Table 1 #(w) for n = 10 | w | #(w) | w | #(w) | |----|------|----|------| | 0 | 1 | 14 | 17 | | 1 | 1 | 15 | 20 | | 2 | 1 | 16 | 22 | | 3 | 2 | 17 | 24 | | 4 | 2 | 18 | 27 | | 5 | 3 | 19 | 29 | | 6 | 4 | 20 | 31 | | 7 | 5 | 21 | 33 | | 8 | 6 | 22 | 35 | | 9 | 8 | 23 | 36 | | 10 | 10 | 24 | 33 | | 11 | 11 | 25 | 39 | | 12 | 13 | 26 | 39 | | 13 | 15 | 27 | 40 | Table 2. #(w) and approximation (2.1) for n = 20 | W | # (w) | w #(w) approx. | w | #(w) | w #(w)
approx. | w | #(w) | w #(w) approx. | |-----|-------------|----------------|----|--------------|-------------------|-------------|-------|----------------| | 21 | 75 | 75.3 | 51 | 2131 | 2129.1 | 81 | 10538 | 10537.7 | | 22 | 87 | 87.0 | 52 | 2300 | 2299.0 | 82 | 10864 | 10864.8 | | 23 | 101 | 102.0 | 53 | 2479 | 2478.0 | 83 | 11186 | 11186.9 | | 24 | 117 | 118.0 | 54 | 2668 | 2666.2 | 84 | 11504 | 11503.0 | | 25 | 135 | 136.0 | 55 | 2865 | 2863.6 | 85 | 11812 | 11812.3 | | 26 | 155 | 156.3 | 56 | 3071 | 3070.3 | 86 | 12113 | 12113.7 | | 27 | 178 | 178.9 | 57 | 3288 | 3286.4 | 87 | 12407 | 12406.3 | | 28 | 203 | 204.2 | 58 | 3512 | 3511.7 | 88 | 12689 | 12689.3 | | 29 | 231 | 232.4 | 59 | 3746 | 3746.2 | 89 | 12961 | 12961.7 | | 30 | 263 | 263.7 | 60 | 3991 | 3989.8 | 90 | 13224 | 13222.6 | | 31 | 297 | 298.3 | 61 | 4242 | 4242.3 | 91 | 13471 | 13471.1 | | 32 | 335 | 336.5 | 62 | 4503 | 4503.6 | 92 | 13706 | 13706.4 | | 33 | 378 | 378.6 | 63 | 4774 | 4773.4 | 93 | 13929 | 13927.8 | | 34 | 424 | 424.8 | 64 | 5051 | 5051.4 | 94 | 14134 | 14134.5 | | 35 | 475 | 475.5 | 65 | 5 337 | 5337.2 | 95 | 14326 | 14325.7 | | 36 | 531 | 530.8 | 66 | 5631 | 5630.6 | 96 | 14502 | 14500.8 | | 37 | 59 1 | 591.3 | 67 | 5930 | 5931.0 | 97 | 14659 | 1.659.1 | | 38 | 657 | 657.0 | 68 | 6237 | 6238.0 | 98 | 14800 | 14800.2 | | 39 | 729 | 728.3 | 69 | 6551 | 6551.1 | 99 | 14925 | 14923.6 | | 40 | 806 | 805.6 | 70 | 6869 | 6869.7 | 100 | 15029 | 15028.7 | | 41 | 889 | 889.1 | 71 | 7192 | 7193.2 | 101 | 15115 | 15115.2 | | 42 | 980 | 979.2 | 72 | 752 1 | 7521.0 | 102 | 15184 | 15182.8 | | 43 | 1076 | 1076.0 | 73 | 7851 | 7852.3 | 103 | 15231 | 15231.3 | | 44 | 1180 | 11.80.0 | 74 | 8185 | 8186.5 | 104 | 15260 | 15260.4 | | 45 | 1293 | 1291.4 | 75 | 8523 | 8522.8 | 1 05 | 15272 | 15270.2 | | 45 | 1411 | 1410.4 | 76 | 8859 | 8860.4 | | | | | 47 | 1538 | 1537.4 | 77 | 9197 | 9198.5 | | | | | 4:3 | 1.674 | 1672.5 | 78 | 9536 | 9536.1 | | | | | 49 | 1817 | 1816.1 | 79 | 9871 | 9372.5 | | | | | 50 | 1969 | 1968.2 | 80 | 10206 | 10206.7 | | | | Table 3. Coefficients of first three moments of W | \ " | $(\mu,1)$ | $\mu = 0.25 (.25) 1.50$ | | | | | |-----------------|-----------|-------------------------|----------|----------|----------|----------| | coeff. | . 25 | .50 | .75 | 1.00 | 1.25 | 1.50 | | P | .401 293 | .291 160 | .226 627 | .158 655 | .096 800 | .066 807 | | 9 1 | .361 835 | .234 235 | .144 422 | .078 650 | .037 574 | .016 947 | | m ₂₁ | .240 257 | .206 386 | .175 267 | .133 484 | .087 430 | .062 344 | | m ₂₂ | .347 923 | .277 200 | .192 104 | .115 097 | .058 567 | .027 476 | | ^m 23 | .075 340 | .056 585 | .033 799 | .016 881 | .006 946 | .002 403 | | ^m 31 | .047 430 | .086 203 | .095 827 | .091 128 | .070 504 | .054 014 | | ^m 32 | .225 539 | .345 618 | .333 059 | .243 020 | .137 157 | .070 001 | | ^m 33 | .147 244 | .201 906 | .173 162 | .103 590 | .045 998 | .017 046 | | ^m 34 | .019 875 | .030 189 | .019 515 | .009 968 | .003 798 | .001 058 | Table 4. Comparison of Klotz's cumulative probabilities and normal approximation for N(1,1), n=10, together with the error shown for the approximating P_2 , P_3 and P_4 | | | Klotz | | 10 ⁴ × Er: | ror of | | |-----|------|---------------|--------|-----------------------|----------------|----------------| | V7 | #(w) | P(W # w) | Normal | P ₂ | P ₃ | P ₄ | | O | 1 | .1777 | - 59 | 0 | 0 | 0 | | 1 | 1 | . 2914 | 625 | + 45 | +38 | -27 | | 2 | 1 | .3664 | - 710 | + 84 | +70 | -47 | | 3 | 2 | .4700 | -1004 | +105 | +78 | -40 | | 4 | 2 | •5397 | - 907 | +120 | +83 | -37 | | 5 | 3 | .6124 | - 819 | +114 | +67 | -18 | | 6 | 4 | .6804 | - 696 | + 85 | +31 | -17 | | 7 | 5 | .73 79 | - 513 | + 65 | + 5 | -37 | | 8 | 6 | .7847 | - 295 | + 51 | -11 | -44 | | 9 | 8 | .8275 | - 127 | + 39 | -23 | -45 | | 10 | 10 | .8638 | + 6 | + 34 | -27 | - 36 | | 11 | 11 | .8914 | + 127 | + 30 | -27 | -26 | | 12 | 13 | .9146 | + 199 | + 21 | - 32 | -21 | | 1.3 | 15 | .9328 | + 240 | + 18 | - 29 | -11 | | 14 | 17 | .9476 | + 249 | + 12 | - 30 | - 6 | | 15 | 20 | .9600 | + 232 | + 6 | -31 | _ 4 | | 16 | 22 | •9693 | + 208 | + 4 | - 28 | ·F 1 | | 17 | 24 | .9764 | + 180 | + 3 | -24 | + 6 | | 18 | 27 | .9822 | + 147 | + 1 | -21 | + 7 | | 19 | 29 | .9866 | + 118 | 0 | -18 | + 9 | | 20 | 31 | •9899 | + 93 | 0 | -15 | + 9 | Table 5. Given n = 10 | P | a 2 | E(W) | b ₃ * | $s_2 - b_3^* \cdot s_1$ | |---------|------------|----------|-------------------------|-------------------------| | .02500 | 01634063 | .31381 | 1.83707 | 22.15959 | | .05000 | 00904215 | .79815 | 2.97823 | 169.80828 | | .07500 | 00579759 | 1.47716 | 4.28975 | 620.71346 | | .10000 | 00400116 | 2.34955 | 5.68875 | 1562.50147 | | .12500 | 00288598 | 3.39762 | 7.11726 | 3122.03702 | | .15000 | 00214043 | 4.59610 | 8.54549 | 5343.75854 | | .17500 | 00161469 | 5.91989 | 9.96180 | 8200.59779 | | .20000 | 00122953 | 7.34483 | 11.36261 | 11609.44424 | | .22500 | 00093940 | 8.84901 | 12.74807 | 15449.32008 | | . 25000 | 00071599 | 10.41587 | 14.12031 | 19581.89779 | | .27500 | 00054129 | 12.03147 | 15.48157 | 23859.44368 | | .30000 | 00040333 | 13.68448 | 16.83394 | 28134.12860 | | .32500 | 00029388 | 15.36601 | 18.17928 | 32264.89875 | | .35000 | 00020715 | 17.06903 | 19.51912 | 36121.49424 | | .37500 | 00013905 | 18.78805 | 20.85475 | 39587.65504 | | .40000 | 00008661 | 20.51871 | 22.18717 | 42562.86995 | | .42500 | 00004772 | 22.25764 | 23.51725 | 44963.98652 | | .45000 | 00002075 | 24.00459 | 24.84574 | 46729.73432 | | .47500 | 00000517 | 25.75043 | 26.17310 | 47801.99147 | Table 6. The cumulative probabilities of approximating P_3 and P_4 from $\mathcal{M}(0.75, 1)$ with n = 20 | | 3 | 4 | • | |----------|------|------------------------|------------------------| | V | #(w) | P ₃ (W ≤ w) | P ₄ (W ≤ w) | | 0 | 1 | .0059 | .0059 | | 1 | 1 | .0109 | .0109 | | 2 | 1 | .0153 | .0153 | | 3 | 2 | .0230 | .0229 | | 4 | 2 | .0296 | .0295 | | 5 | 3 | .0382 | .0381 | | 6 | 4 | .0481 | .0480 | | 7 | 5 | .0589 | .0587 | | 8 | 6 | .0701 | .0699 | | 9 | 8 | .0831 | .0828 | | 10 | 10 | .0972 | .0968 | | 11 | 12 | .1119 | .1113 | | 12 | 15 | .1278 | .1272 | | 13 | 18 | .1444 | .1437 | | 14 | 55 | .1620 | .1611 | | 15 | 27 | .1807 | .1798 | | 16 | 32 | 2000 | .1990 | | 17 | 38 | .2200 | .2188 | | 18 | 46 | . 2409 | . 2397 | | 19 | 54 | . 2623 | .2610 | | 20 | 64 | .2343 | . 2829 | Table 7. Excerpt of the cumulative probabilities of the approximating P_3 and P_4 from Tukey's model—a blend of 0.97 from $\mathcal{N}(1,1)$ and 0.03 from $\mathcal{N}(1,1)$; n=10 | W | #(w) | P ₃ (W ≤ w) | P ₄ (W ≦ w) | |----|------|------------------------|------------------------| | 0 | 1 | .1629 | .1629 | | 1 | 1 | .2707 | . 2687 | | 2 | 1 | .3426 | .3387 | | 3 | 2 | .4396 | .4330 | | 4 | 2 | •5055 | .4973 | | 5 | 3 | .5734 | .5642 | | 6 | 4 | .6360 | .6266 | | 7 | 5 | .6906 | .6818 | | 8 | 6 | .7367 | .7291 | | 9 | 8 | .7803 | •7744 | | 10 | 10 | .8192 | .8154 | | 26 | 39 | •9952 | •9977 | | 27 | 40 | .9964 | .9984 | | 28 | 40 | •9973 | •9989 | | 29 | 39 | .9980 | • 9993 | | 30 | 39 | .9985 | • 9995 | | 31 | 38 | .9989 | • 9997 | | 32 | 36 | •9992 | .9998 | | 33 | 35 | •9994 | • 9999 | | 34 | 33 | .9996 | • 9999 | | 35 | 31 | •9997 | 1.0000 | Table 8. P_{μ} -cumulative of Wilcoxon distribution from χ^2_{10} with n=10 | W | N(W) | P ₄ -cum | W | N(W) | P ₄ -cum | |----|------|---------------------|----|------|---------------------| | 0 | 1 | .0005260 | 40 | 20 | .8928811 | | 3 | 1 | .0010943 | 41 | 17 | .9094992 | | 2 | 1 | .0017046 | 42 | 15 | .9243857 | | 3 | 2 | .0030076 | 43 | 13 | •9375258 | | 4 | 2 | .0043908 | 44 | 11 | .9488886 | | 5 | 3 | .0065813 | 45 | 10 | •9594839 | | 6 | 4 | •0096488 | 46 | 8 | .9682115 | | 7 | 5 | .0136563 | 47 | 6 | .9749787 | | 8 | 6 | .0186585 | 48 | 5 | .9808340 | | 9 | 8 | .0255651 | 49 | 4 | .9857195 | | 10 | 10 | .0344671 | 50 | 3 | .9895591 | | 11 | 11 | .0445238 | 51 | 2 | .9922548 | | 12 | 13 | .0566837 | 52 | 2 | .9951082 | | 13 | 15 | .0709878 | 53 | 1 | .9966265 | | 14 | 17 | .0874601 | 54 | 1 | .9982513 | | 15 | 20 | .1070904 | 55 | 1 | 1.0000000 | #### References - [1] Arnold, H. J. (1965). Small sample power of the one sample Wilcoxon Test for non-normal shift alternatives. Ann. Math. Statist. 36, 1767-1778. - [2] Hodges, J. L., Jr. and Lehmann, E. L. (1968). A compact table for power of the t-test. Ann. Math. Statist. 39, 1629-1637. - [3] Hodges, J. L., Jr. and Lehmann, E. L. (1964). <u>Basic</u> <u>Concepts of Probability and Statistics</u>. Holden-Day, Inc. - [4] Hoeffding, Wassily (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19, 293-325. - [5] Klotz, J. H. (1963). Small sample power and efficiency for the one sample Wilcoxon and normal scores tests. Ann. Math. Statist. 34, 624-632. - [6] Milton, R. C. (1967). Quadrature of high dimensional integrals: Applications to non-parameter statistics. - [7] U. S. Department of Commerce, National Bureau of Standards (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Appl. Math. Series 55.